coral transplantation

Winter Doesn’t Just Mean Thicker Wetsuits…

Volunteers and interns play a significant role in our reef restoration programme in the Bay of Ranobe. Here, Reef Doctor volunteer Elizabeth Pasea describes our coral transplantation project which takes place in Madagascar’s winter months (June-October).


“Cooler waters in winter in the Bay of Ranobe means it’s coral transplant season here at Reef Doctor. We transplant coral to repair existing reefs damaged by fishing gear, storms, or divers’ fin strikes, increase biodiversity of coral species within particular coral environments, and also to create new reef habitats or supplement artificial reefs.

The Bay of Ranobe is largely enclosed by a barrier reef and its calm waters require careful stewardship to prevent overfishing. By increasing the areas within the bay that are populated with coral, additional habitats for fish spawning and feeding will become available, increasing the general fish population and ensuring a more sustainable fishery. It is also hoped that rich coral environments will attract more tourists and create new types of livelihoods for people here.

Transplanting coral starts with searching for ‘corals of opportunity’. These are broken bits of hard coral that are detached from their former colonies during storms or contact with fishing gear. We have favourite spots where we search around the likely types of coral on the seabed. I was surprised that fragments as small as my little toe can be viable for transplantation. If we did not gather these fragments, it’s unlikely that they would form new colonies where they fall. Gloves are necessary to handle the fragments- oil on human skin can damage coral, (and some coral can damage human skin!); then we place them in zip lock bags under water. Back on the boat, they are placed in a shaded bucket as we motor to our next destination, either a coral nursery or artificial reef site. We take care to keep the fragments cool, to prevent them from secreting mucous, a sign of stress.

If the fragments are destined to be placed straight onto their next permanent home, we dive with minimum delay, moulding epoxy on the boat and remembering to work it to keep it soft, as we descend to the reef. Once we have found a suitable small depression in the substrate (usually rock or dead coral), we clean any algae away with a toothbrush and mould epoxy around the base of the coral fragment to hold it in place. Over the next day or so, it hardens. In time, a successful coral transplant’s polyps will start to encrust over the epoxy and the substrate, and a thriving colony will form.

coral transplantation

coral transplantation

If we don’t have a new permanent site for our coral fragments, we place them in a coral nursery. Before we dive for the second time, we superglue the live fragments to pieces of dead coral; the dead coral can then be affixed to underwater structures such as tables or metal rebar arches with cable ties. The live coral will start to encrust over the dead coral, instead of over the nursery structure, which makes it easier to perform the transplant once a new permanent home is found. As with any garden, we check on it frequently, and clean away algae (with toothbrushes), from our coral ‘babies’ weekly.”

coral transplantation

coral transplantation

coral transplantation

Blog by Reef Doctor volunteer Elizabeth Pasea
Photo credits: Daniel Gaul

Elizabeth Passea

‘Reef Safe’ Sun Protection: an update

We have previously written about the damaging effects of sunscreen on coral reefs and have banned the use of commercial non ‘reef safe’ sunscreens at Reef Doctor. In this new blog, Reef Doctor volunteer Elizabeth Pasea updates us on the issue and recommends the best approach for protecting your skin from the harmful effects of UV radiation with minimal impact to coral reefs:

“Growing up under a hole in the ozone layer in New Zealand, I was aware of how important sunscreen is to protect against skin cancer. I have more recently learned that the ingredients in most commercial sunscreens are damaging to coral. Awareness is spreading; Hawaii has recently banned the ingredients octinoxate and oxybenzone due to their negative impact on coral ecosystems.

Studies have shown that even ingredients advertised as ‘reef safe’ can still increase oxidation and acidity levels in water and contribute to coral stress, where they may expel the algae which reside in them and give the coral it’s colour; the process known as coral bleaching. Non-organic sunscreen ingredients, zinc oxide or titanium dioxide, are less toxic than petroleum-based ingredients; however their nano particles may still damage coral.

Elizabeth Passea

80% of the ReefDoctor volunteers currently on camp have titanium dioxide based sunscreen, and 20% zinc oxide. Most of us found that we had to search hard for these products – they were not the most readily available products.

One of the things to notice when arriving in this part of Madagascar is that some of the women wear mud on their faces during the day for sun protection, as demonstrated in the photo below by Reef Doctor Support staff member Hortence. As it happens, titanium dioxide is just about to start being mined in Ranobe, not far from the Reef Doctor camp, science is catching up with local Vezo custom!

local women with facepaint


When diving at Reef Doctor, whether gathering data on the health of the reef or transplanting coral, we try to minimise our application of ‘reef-safe’ sunscreen to dry skin; when applied to wet skin it is liable to rinse off straight away. We also prefer hats and clothes to protect our skin when on the boat and during surface intervals.

It’s not only swimmers and divers who introduce sunscreen and other chemicals to the coral environment: chemicals used on land and washed off into many municipal waste systems also end up in the ocean. A recent study (Corinaldesi et al, 2018) showed that patented titanium based ingredients ‘Optisol’ And ‘Eusolex T2000’ have significantly lower levels of toxicity to coral than zinc oxide. Hopefully, we will see more products with these ingredients available to buy soon.

In the meantime, please read the ingredients! The conservative application of products containing non-nano zinc oxide and titanium oxide applied to dry skin remains the best option to help ensure coral ecosystems survive beyond 2050.”

Blog by Elizabeth Pasea

Photo credits: Elizabeth Pasea & Margot Chapon 

artificial habitat enhancement structure

Artificial Reef Site Gains New Habitat Enhancement Structures

During the past few weeks at Reef Doctor, volunteers have been providing valuable assistance with the community-based artificial reef project. They have been busy designing and building two new low-cost habitat enhancement structures in order to promote marine organism colonisation and aggregation at one of the artificial reef site in the Bay of Ranobe.

Each week volunteers came together at the construction area next to the science office to combine imaginations and construction skills to develop these structures and plan their installation. The first design comprised a hollow, cement dome designed to act as a refuge for juvenile fish and invertebrates, as well a provide an additional substrate for algae and coral colonisation. They first made a pyramidal shaped mould in the sand and then, with a bit of cement, sand and shell pieces from the beach, they were able to build a series of eight hollow domes with holes, to provide access for small fish and invertebrates. The science team and volunteers took the structures out on our boats at sunrise for deployment at the artificial reef, Vato Mahavelo, close to the Rose Garden marine reserve. They were lucky as the water visibility was excellent, our boat captain Manjo didn’t even need the GPS to spot the site. In fact, they could see the little city of artificial reef bommies from the surface! From the boat, they dropped the small but very heavy structures onto the artificial reef site, which stands at 5m depth, they then dived down to ensure correct positioning. Placed between the large artificial reef bommies, these domes can act as a connection between bommies and provide an important additional shelter for many small marine organisms.

artificial habitat enhancement structure

The second design was a two-layered rebar nest-like frame (2m x 2m) filled with empty, recycled shells. This structure was also designed to provide shelter for fish and invertebrates. The first layer of large rebars will allow some big fish to enter and shelter but the second layer of narrower rebars filled with shells will only provide access for juvenile or small fish. The shells attract rapid colonisation by microorganisms and algae that will also provide a new food source for grazing fish and invertebrates.

artificial habitat enhancement structure

Another group of volunteers, with the help of children from Ifaty, gathered as many shells as they could in order to fill the structure. At the Reef Doctor open day held a few months ago, we ran a shell collecting competition for the children. They organised teams and collected many bags of empty waste shells from the village, which would have either be sold on the curio trade or discarded as rubbish (locals eat the mollusc animal inside the shell). This was a great opportunity to involve the children in the recycling of empty shells for beneficial ecological purposes and encouraging their return back into the ocean ecosystem, as opposed to supporting the detrimental curio trade or allowing them to simply going to waste on land.

shell collection

collecting shells

For its installation, the structure needed to be towed on a big pirogue by our boat and was dropped next to the artificial reef bommies. Our science team and volunteers will begin monitoring marine life colonisation and utilisation of these structures, stay tuned for further updates!

Our artificial reef project is conducted in collaboration with the local fishermen’s association FI.MI.HA.RA. Together, and with significant help from our volunteers, we aim to continue deploying habitat enhancement structures to enhance our network of artificial reef bommies at degraded reef sites across the bay. By creating new reef habitats and increasing fishing yields at artificial reef sites we hope to reduce fishing pressure on the few remaining natural coral reefs in the Bay of Ranobe.

Photo credits: Margot Chapon & Mattia Ghilardi

DIY – Make Toys With Rubbish

All around the world, children love toys. In Europe and America, toys are everywhere and quite accessible. During holidays, and especially Christmas, is the time when every parent goes and buys toys as a gift for their children. Gifts, in our countries, represent a massive quantity of waste, especially with the packaging and even more with gift-wrap.

In Madagascar, and especially in rural areas of the Southwest, where Reef Doctor is based, kids are not as lucky and don’t get many gifts or toys. So they came up with an idea: make their own toys. What type of raw material would you use to make your own toys? In rural villages, where people don’t own a lot of things, there is not as much material… but children here are resourceful and will use anything they can find in the village or on the beach, things that no one needs to use anymore… I’ll give you three guesses. Rubbish, of course!

In this blog, which is a tiny bit unusual, we’re inviting you to join the children of Ifaty during a session of making toys with rubbish.

How to make a kite

Material needed:

– plastic (out of a plastic bag or any more or less solid plastic)

– branches (straight and light, like bamboo)

– strings (ideally nylon or something similarly resistant)

Here in Ifaty, you can find all these things easily without the need to buy anything. You can pick up branches that have fallen on the ground and get strings out of thick fishing ropes by taking single strings apart. Torn pieces of rope can easily be found on the beach. The plastic can be a bit trickier sometimes, but as we already mentioned, kids here are resourceful and they will always find a solution. Let’s take a plastic bag as example and show you how do make your own kite with it.

You start by cutting the edges of the plastic bag, to have a flat surface. You should now have some kind of rectangle. You fold the plastic in two, lengthwise, and cut a triangle, so when you unfold it you have a diamond. This will make the wing of your kite.

For the next step you need the branches. As mentioned, they must be straight and light, so bamboo is the ideal wood for that. Depending on the size of the branch, you might cut it in two or four parts. Once you have your pieces of branch, you need to put them in a cross on the diamond of plastic, on the longest parts. After you place them, you need to make tiny holes on each side of the branch, near both edges. In the holes, you pass a piece of string and tie a tight knot. You do the same on the other three edges. You will then have your plastic diamond tightly attached to your wooden cross.

Now you go back to what is left of your plastic bag and cut a long piece, which can be a bit twisted and uneven, as it’s going to be the tail of your kite. Once you’re satisfied with how the tail looks, you can attach it on the wood on the bottom part of the diamond. You are now almost done! The only thing left to do is the string to be able to fly it. You need quite a long piece of string, and if you cannot find a long one, you can tie several pieces of string together to make a long one. Once your string is ready, simply attach one end to the bottom wood stick. Your kite is now ready to fly!


How to make a toy car

Material needed:

– sardine can

– bottle caps

– small straight sticks

You probably already guessed what this toy could be – the sardine can is going to be your car and the bottle caps the wheels. But how to put all that together? We’re going to explain it all to you and you’ll see, it’s pretty simple!

First, take a pair of scissors or anything that can pierce a can. Prepare the wooden sticks on top of the sardine can, on the bottom and on the top, so you can make straight holes in which you’ll be able to introduce the wooden sticks. Once the holes are pierced and the wooden sticks go through the sardine can, you can pierce the bottle caps and fix them on the wooden sticks. If your wooden sticks are too long, cut them a bit before inserting the bottle caps. Your car is now ready! The only thing left to do is to pierce a little hole at the top of the can and to put in a string, tie a knot and you can now start playing with your new recycled toy!

Buying toys that are gift-wrapped makes our children happy and puts a big smile on their faces. It is great to please them but while thinking of how to make them happy, you could also give a thought to the impact of all the wrapping paper and packaging discarded and maybe even the toy itself. Almost every child in the world loves to fly kites, and how proud would they be to create and make a kite with their own hands? Not only a great way to reduce pollution, but also a great family activity! So, why not give it a try?

Blog and photos by RD Comms Officer Karin Moehler

World Wetlands Day 2018

Last Friday (2nd Feb) was World Wetlands Day, a special day to celebrate these special ecosystems that are so vital to our planet and to contribute to their conservation!

Wetlands of International Importance are protected by a convention, known as the Ramsar Convention. This is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources (Source: The Convention counts 169 Contracting Parties and 2,293 wetlands are listed as Ramsar Sites. Madagascar has been part of the Convention since 1998 with two Ramsar Sites initially, amongst which, the National Park of Tsimanampesotse, located in the Province of Toliara. Over the last 20 years, another 18 wetlands have been added to the Ramsar List, making a total of 20 Ramsar Sites in Madagascar today, covering an area of 2,094,911 hectares. Last year was particularly active, with the addition of 10 new wetlands to the list.

The wetland of Belalanda, in the district of Toliara, where we work, offers many natural resources on which the local communities depend. This wetland is composed of mangroves and reeds, and covers a surface of approximately 400 hectares. It spreads across five villages: Belalanda, Belitsaky, Tanambao, Ambondrolava and Ambotsibotsiky. Since 2008, the Honko NGO worked working towards the preservation of this wetland, and since early 2017, following incorporation into Reef Doctor, this work continues as part of Reef Doctor Honko Project.

Mangroves are a unique forest ecosystem for several reasons related to the relatively hostile environment in which they develop. They grow on a muddy, unstable, anaerobic (low in oxygen), and high salinity soil. The trees have therefore developed anatomical and physiological characteristics to survive these constraints: respiration through aerial roots, recovery of nutrients despite low oxygen levels, adaptation to the soil by a special fixation system of the roots, reproduction by viviparity (specific germination mode on the parent tree) and a wide variety of techniques to get remove salt.

As mentioned, mangroves are a vital coastal ecosystem that play a considerable number of important ecological, sociological and economic roles. Mangroves are home to many species of fish and shellfish, and shelter a unique biodiversity. 75% of all tropical fish species traded in the world live part of their lives in the mangrove. It serves as a spawning ground, incubator, nursery, refuge against predators and feeding ground for these fish and shellfish. In addition, mangroves act as a natural barrier against submersion and coastal erosion. Sediments accumulate in mangroves, reducing turbidity in Ranobe Bay and allowing the development of coral reefs. Finally, mangroves are amongst the most efficient forests to trap some of the excess atmospheric carbon and therefore help regulate the climate.

As a marine conservation NGO, we are very aware of the close association between mangroves, seagrass beds and coral reefs, and work towards stabilizing and restoring all of these components to ensure the stability and survival of marine ecosystems in the region.

Our team at the Reef Doctor Honko site works continuously to improve the management of the mangrove area and its restoration. To evaluate the success of conservation efforts, it is crucial to implement long term monitoring. We also try to keep our fauna inventory up to date and have mapped the mangrove area with the help of our volunteers. Last June, we told you about a big planting event on the Tsingoritelo sand spit with the aim to stabilize the dune, as its progression is threatening the mangrove. Since 2015, a temporary fishing reserve in the mangrove of Ambondrolava was established thanks to the financing of the LUSH Foundation. The system was organized into two rotating reserves in the mangrove channel, so there would always be a protected area.

Mangrove reforestation is essential for mangrove restoration. Since the creation of Honko in 2008, around 40 hectares of mangroves have been planted. Since the beginning of 2017, following incorporation into Reef Doctor, planting activity has been intensified with 14 hectares and 170,000 propagules being planted by more than 600 members of the local communities and Reef Doctor’s volunteers, interns and staff in the mangrove of Belalanda.

To celebrate this year’s World Wetlands Day, we decided to organize another planting event at our Honko site in Ambondrolava to help restore the mangroves there. All volunteers, interns and staff joined in and planted more than 400 propagules of red mangrove, Rhizophora mucronata, as well as a few Moringa trees. It was a nice day for everyone and allowed some new volunteers to discover Honko and learn more about mangroves, thanks to the knowledgeable local guides. Well done and thanks to everyone!

Blog by RD Comms Officer Karin Moehler

Photo credit: Karin Moehler & Margot Chapon